Title: False Negatives Are a Significant Feature of next Generation Sequencing Callsets

نویسندگان

  • Dean Bobo
  • Mikhail Lipatov
  • Juan L. Rodriguez-Flores
  • Adam Auton
  • Brenna M. Henn
  • Brenna Henn
چکیده

Short-read, next-generation sequencing (NGS) is now broadly used to identify rare or de novo mutations in population samples and disease cohorts. However, NGS data is known to be error-prone and post-processing pipelines have primarily focused on the removal of spurious mutations or "false positives" for downstream genome datasets. Less attention has been paid to characterizing the fraction of missing mutations or "false negatives" (FN). Here we interrogate several publically available human NGS autosomal variant datasets using corresponding Sanger sequencing as a truth-set. We examine both low-coverage Illumina and high-coverage Complete Genomics genomes. We show that the FN rate varies between 3%-18% and that false-positive rates are considerably lower (<3%) for publically available human genome callsets like 1000 Genomes. The FN rate is strongly dependent on calling pipeline parameters, as well as read coverage. Our results demonstrate that missing mutations are a significant feature of genomic datasets and imply additional fine-tuning of bioinformatics pipelines is needed. To address this, we design a phylogeny-aware tool [PhyloFaN] which can be used to quantify the FN rate for haploid genomic experiments, without additional generation of validation data. Using PhyloFaN on ultra-high coverage NGS data from both Illumina HiSeq and Complete Genomics platforms derived from the 1000 Genomes Project, we characterize the false negative rate in human mtDNA genomes. The false negative rate for the publically available mtDNA callsets is 17-20%, even for extremely high coverage haploid data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negatives Are a Significant Feature of Next Generation Sequencing Callsets

Short-read, next-generation sequencing (NGS) is now broadly used to identify rare or de novo mutations in population samples and disease cohorts. However, NGS data is known to be error-prone and post-processing pipelines have primarily focused on the removal of spurious mutations or "false positives" in downstream genome datasets. Less attention has been paid to characterizing the fraction of m...

متن کامل

Next Generation Sequencing and its Application in the Study of Microbiome in Plant Diseases Suppressive Soils

Progress in next-generation sequencing has played a significant role in ecological studies of microbial populations. These advances have led to a rapid evaluation in metagenomics studies (analysis of DNA of microbial communities without the need to culture). Many statistical and computational tools and metagenomics databases have led to the discovery of huge amounts of data. In this research, i...

متن کامل

Genome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review

Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...

متن کامل

Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2

Current PCR-based target enrichment methods for next generation sequencing (NGS) of overlapping amplicons often requires separate PCR reactions and subsequent pooling of amplicons from the different reactions. The study presents a novel method, deemed stem-loop inhibition mediated amplification (SLIMamp), for amplifying overlapping or tiled amplicons in a single multiplex PCR reaction. During a...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016